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Passive heat-transfer augmentation or alteration along an external boundary using alter- 
nately emplaced porous cavity-block wafers is analyzed in this work. The Brinkman- 
Forchheimer-extended Darcy Model, which accounts for the effects of impermeable 
boundary and inertia, is used to characterize the f low field inside the porous region. The 
present work constitutes an innovative way of altering and control of the f low and 
heat-transfer characteristics of an external surface. The formulation of the problem shows 
that f low and heat-transfer characteristics depend on seven dimensionless parameters, 
namely, the Reynolds number, Darcy number, the Prandtl numbers, inertial parameter, two 
pertinent geometric parameters, and the number of porous cavity-block obstacles. Solution 
of the governing equations is carried out using the steam function-vorticity formulation, 
and an in-depth discussion of the results for various physical interactions between the 
recirculating flows inside of the cavity and the external f low is presented. Several 
interesting phenomena such as the interactions between the blowing and displacement 
effects from the porous blocks and the vortices penetrating into the porous cavities are 
presented and discussed, and it is shown that altering some parametric values can have 
significant effects on the external momentum and thermal boundary-layer characteristics. 
The present investigation forms a pertinent and basic research investigation for altering 
the skin friction and heat-transfer characteristics of an external surface. 
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Introduction 

Forced convection over external boundaries in the presence of 
a porous medium has constituted an important area of research 
for the past several decades. This is due to the very fundamental 
and generic nature of this type of problem, which makes it 
pertinent to a wide variety of applications including drying 
processes, heat pipes, filtration, direct contact heat exchangers, 
electronic cooling, thermal insulation, and so forth. Tien and 
Vafai (1989) and Lauriat and Vafai (1991) discuss pertinent 
aspects of heat transfer in fluid-saturated and unsaturated 
porous medium as well as various aspects of these applications. 

Vafai and Tien (1981) analyzed the effects of a solid boundary 
and inertial force on flow over an external boundary, after 
establishing the governing equations by a local volume- 
averaging technique. They showed that for the flow field the 
boundary effect is confined within a thin momentum boundary 
layer, which often plays an insignificant role in the overall flow 
consideration; however, when the thermal boundary layer's 
thickness is less than or of the same order as that of the 
momentum boundary layer, the effect of boundary on the heat 
transfer is more pronounced. Kaviany (1987) obtained 
Karman-Pohlhausen solutions for the same flow configuration 
on the basis of the governing equations developed in Vafai and 
Tien (1981). 
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An important problem related to forced convection through 
a porous medium is flow and heat transfer in composite 
systems. This involves the study of fluid flow above and 
through a porous medium. The flow over the fluid region is 
governed by the Navier-Stokes equation, and the flow through 
the porous medium is governed by the generalized momentum 
equation, which includes the effects of flow inertia as well as 
friction caused by macroscopic shear stress (Vafai and Tien 
1981). These two flows are coupled through the interface 
boundary conditions at the porous-fluid interface. The 
interactions of flow and temperature fields between the 
porous-saturated region and the fluid region has a significant 
influence on the convection phenomenon in these systems. 

The present work forms a fundamental investigation into the 
effects of using a combination of porous blocks and embedded 
porous wafers for altering and controlling the skin friction and 
heat-transfer characteristics of an external surface. As such, this 
configuration does present the fundamental characteristics that 
can apply to various applications related to alteration of flow 
and heat-transfer characteristics. Variations in skin friction and 
Nusselt numbers as a result of using these types of structures 
are analyzed in detail. The present work constitutes an 
innovative passive method for altering and controlling the flow 
and heat-transfer characteristics of an external surface. 

This type of basic composite system is of importance in 
various applications such as crude oil extraction, solidification 
of castings, geothermal operations, nuclear waste repositories, 
thermal insulation, and so forth. Several investigations were 
devoted to the problem of finding the proper set of boundary 
conditions at the interface between a fluid flow in a porous 
medium and the adjacent region without a porous medium. 
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Beavers and Joseph (1967) experimentally reported the mass 
efflux of a Poiseuille flow over a naturally permeable surface 
based on Darcy's law. They found that when a viscous fluid 
passes over a porous solid, tangential stress entrains the fluid 
below the interface with a velocity, which is slightly greater 
than that of the fluid in the bulk of the porous medium. Levy 
and Sanchez-Palencia (1975) found that when the typical length 
scale of the external flow is large compared with the 
microscopic scale, the velocity field transition at the interface 
from the porous media to the free fluid region occurs over a 
thin region of the order of the pore scale. They also showed 
that depending on the direction of the pressure gradient in the 
porous medium two different kinds of phenomena may appear 
at the interface. 

More relevant to the present study is the work of Vafai and 
Thiyagaraja (1987), which was based on the generalized model 
established in Vafai and Tien (1981). They performed a 
theoretical analysis for a general class of problems involving 
interface interactions on the flow and temperature fields for 
three basic types of interface composites. Vafai and Kim (1990) 
studied forced convection over an external boundary with a 
porous substrate. They found that the porous substrate causes 
a blowing effect on the flow field. They also found that the 
porous substrate significantly reduces the frictional drag, and 
it can either enhance or reduce the heat transfer at the wall. 
Another related problem is the recirculating flow created by 
boundary layer separation because of an abrupt change in body 
geometry. Heat transfer in such flows without any porous 
medium has been reviewed by Fletcher et al. (1974) and Aung 
and Watkins (1979). 
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Although there is a large body of literature about transport 
through porous media, a far more complex problem on 
transport through porous-fluid structures has received very 
little attention. In fact, transport through porous substrate 
cavities or blocks has not been studied except for the present 
set of investigations. This manuscript provides an in-depth and 
vivid presentation of the physics and the relevance of using a 
combination of porous blocks and embedded porous substrates 
for altering and controlling the flow and temperature fields, 
and therefore changing the skin friction and heat-transfer 
characteristics of an external surface. This is done through a 
detailed analysis and in-depth discussions of the significance of 
these structures, and their crucial influence on altering the skin 
friction and heat-transfer characteristics of an external surface 
using this type of configuration. The present investigation 
considers the basic and original problem, and it does present 
several very interesting results. 

Analysis of external forced convection in a porous-fluid 
composite system is significantly more complicated because of 
the complex geometric configuration of these types of systems. 
This work presents a numerical study of forced convection over 
a composite system, which is composed of alternating porous 
cavity and block regions separated by the exposed areas of the 
plate. Because little attention has been focused on external 
forced convection fluid flow and heat transfer in the 
porous-fluid composite system, the major goal of the present 
study is to investigate fundamental changes in the flow and 
temperature fields owing to the existence of cavity-block 
porous obstacles and the interactions between the blowing and 
displacement effects from the porous blocks and the vortices 

Notat ion  
A Dimensionless geometric parameter, W*/H* 
B Dimensionless geometric parameter, D*/W* 
D Spacing between cavities or blocks, m 
Da L Darcy number, K/L 2 
F A function used in expressing inertia terms 
9(x, y) Curve defining the porous/fluid interface 
H Thickness of the porous medium, m 
k Thermal conductivity, W/mK 
K Permeability of the porous medium, m 2 
f~ Length of plate upstream from the first obstacle, m 
ga 2 Length of plate downstream from the last 

obstacle, m 
L Length of the external boundary as shown in 

Figure 1, m 
n Coordinate normal to the porous/fluid interface 
N Number of blocks 
P Pressure, Pa 
Pe L Peclet number, u~L/ct 
Pr Prandtl number, v/ct 
Re L Reynolds number, u~oL/v 
t Coordinate tangential to the porous/fluid interface 
T Temperature, K 
u x-Component velocity, m/s 
o y-Component velocity, m/s 
v Velocity vector, m/s 
V Volume, m 3 
W Width of the porous block, m 
x Horizontal coordinate, m 
y Vertical coordinate, m 

Greek symbols 
Thermal diffusivity, m2/s 

G(ef f Effective thermal diffusivity, keff/fffCp,f, m2/s 

Ax 
Ay 
fix 

6y 

E 

0 
AL 
# 
Y 

P 
qb 

x-Direction width of the control volume 
y-Direction width of the control volume 
x-Direction distance between two adjacent 
grid points 
y-Direction distance between two adjacent 
grid points 
Porosity of the porous medium 
Dimensionless temperature, ( T - To~)/( Tw - T~) 
Inertial parameter, FL ~ / x / ~  
Dynamic viscosity, kg/ms 
Kinematic viscosity, m2/s 
Vorticity 
Density, kg/m 3 
Transported property; general dependent 
variable 
Stream function 

Superscripts 
* Dimensionless quantity 
f Fluid 

Subscripts 
eft Effective 
f Fluid 
P Porous 

Condition at infinity 

Other 
<> 
[a, b] 

Local volume average of a quantity 
Larger of a and b 

Int. J. Heat and Fluid Flow, Vol. 15, No. 1, February 1994 49 



Convective heat transfer: P. C. Huang and K. Vafai 

penetrating into the porous cavities. Furthermore, the influence 
of the governing physical parameters is also thoroughly 
analyzed, and it is shown that altering some parametric values 
can have significant effects on the external momentum and 
thermal boundary-layer characteristics. 

Analysis 

The configuration for the problem under investigation is 
depicted in Figure 1. The width and height of the rectangular 
porous cavities and blocks are H and W, respectively, the 
distance between any given cavity and a block is D, the length 
of the external boundary L, the steam velocity u~, and the 
free stream temperature is T~o. The external boundary is 
maintained at a constant temperature Tw. It is assumed that 
the flow is steady, laminar, incompressible, and two- 
dimensional. In addition, the thermophysical properties of the 
fluid and the matrix are assumed to be constant, and the porous 
medium is considered homogeneous, isotropic, nondeformable, 
and in local thermodynamic equilibrium with the fluid. The 
governing conservation equations for the present problem will 
be separately written for the porous and fluid regions. Treating 
the solid matrix and the fluid as a continuum, the local volume 
averages of the conservation equations for mass, momentum, 
and energy in the porous region, which account for the effects 
of the inertial and impermeable boundary, are (Vafai and Tien 
1981) 

V.<v> = 0 (1) 

pfFE 
-- (#f]<v> + ( ~ - ) [ < v >  • <v>]J \ K J  (2) 

((v>" V< T>) = ~¢ffV2< T >  (3) 

where ( ) denotes the local volume average of a quantity, v 
represents the velocity vector, pf the fluid density, E the 
porosity, K the permeability, J a unit vector oriented along the 
velocity vector, (P ) f  the intrinsic phase average of pressure, 
/2 r the fluid viscosity, and F is an empirical function that 
depends primarily on the microstructure of the porous medium. 

Porous medium 

u. ,T-  

' ~ " ~/z "/I/I/l~l 

W 

I T M  ~l  

L 

Figure 1 Schematic diagram of flow and heat transfer through 
alternate porous cavity-block obstacles 

The conservation equations for mass, momentum, and energy 
in the fluid region are 

V. v = 0 (4) 

1 
v. Vv = -- - -  VP + v f V 2 v  (5) 

Pr 

v '  VT = ctfV2T (6) 

The associated boundary conditions necessary to complete the 
formulation of the problem are 

u=u~o ,v=O,P=P~,T=Too  

u = ( u ) = 0 ,  o = ( o } = 0 ,  T = ( T } =  T w 

u = u ~ , P =  P~o,T= To~ 

at x = 0 (7) 

on the solid wall 
(8) 

as y -~ oo (9) 

In addition these two sets of conservation equations are 
coupled by the following matching conditions at the 
porous-fluid interface, which satisfy the continuity of the 
velocity, pressure, stress, temperature, and heat flux across the 
interface, 

(U)g(x,y)=O = U[gtx, y)=O )' ( I ) ) [g(x ,y)= 0 = OIg(x,y) = 0 (lOa) 

(P)lgt.,y,=O = Plgt.,y~=o, Pc. ~ n -  n = ~ t f~  n (10b) 

]'/¢fr~ x (~n -]- : # f  OF[ "~- ( lOc)  

3 ( T )  ,l~.y)=o 0T (10d) (T)lglx.y)=O = Tl~tx.y)=o, k a f ~ n  = kf~n g~x,y)=O 

where g(x, y ) =  0 is the curve defining the porous-fluid 
interface. The derivative with respect to n and t represents the 
normal and tangential gradients, respectively, to the curve 
g(x, y) = 0 at any point on the interface. It should be noted that 
here we are not trying to resolve a philosophical question with 
respect to the physical nature of the interface or the 
micromechanics of a porous-fluid interface but rather use the 
established and classical form of the interface conditions (Vafai 
and Kim 1990). To accommodate the solution of the transport 
equation in both fluid and porous regions, the effective viscosity 
that refers to the coefficient in front of the Laplacian of the 
velocity in Equation 2 of the fluid-saturated porous medium is 
set equal to the fluid viscosity. It has been found that this 
approximation provides a good agreement with experimental 
data (Lundgren 1972; Neale and Nader 1984). Introducing the 
stream function and vorticity as 

0g, 00 
-- - (11) u = ( u )  ~ y , V = ( 0 )  ~x 

Ov Ou O(v) O(u) 
- (12) 

3x Oy ~x c3y 

these two sets of conservation equations are transformed 
into one set of dimensionless stream function-vorticity 
formulation, which is valid throughout the composite system. 

0~* 8~* 0~* 8~* 1 
= V2~ * + S* (13) 

~y* ~x* 8x* ~y* R e  L 

v2~ ,  = _ ~, (14) 

o~*ao . ~ * ~ o  = v ( : v o ~ -  (15) 
~y* ~x* ~x* Oy* \PeL / 
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the nondimensional parameters in the fluid region are 

uooL Pe uooL S * =  0 (16a) ReL = , L : - - ,  

Vf  ~f 

and in the porous region the nondimensional para- 
meters are 

uoo L K F L~ 
- - - ,  DaL = ~ '  AL = ~ 2  (16b) 

~eff 
p e  L - 

and 

S * -  ~* - ALIv*I~* - AL[O* / OIv*l _ u* OIv*[/\ 
ReLDa L \ c~x* Oy* J 

(17) 

Here S* can be considered as the term that contributes to 
the vorticity generation because of the presence of the porous 
medium. This source term is zero in the fluid region as can be 
seen by examining Equation 5. However, the source term is 
nonzero and given by Equation 17 for the porous region. In 
addition, the dimensionless boundary conditions are 

~ ' * = Y * , 4 * = - - - , 0 = 0 ,  a t x * = 0  (18) 
~X .2  

9z~,* 
~ k * = O , ~ * - - - O x , ~ , O = l ,  at 

x* = ~'f* + 2(N -- 1)(W* + D*) 0 > y* > --H* (19) 
( [*  + W* + 2(N - 1)(W* + D*)' 

and 

~ * = 0 , 4 " =  ~2~, - Oy ,~ ,O  = 1, at 

? * + 2 ( N - 1 ) ( W * + D * ) < x * < ~ * + W *  

+ 2(N - 1XW* + D*), y* = - H *  

x* = 0 < x* < f~ / (20) 

( * + W * + 2 ( N -  1 ) ( W * + D * ) < x *  < ( * [ y . = 0  

+2N(W* + D*) 

( 1 - f * ) < x * <  1 

and 

= 1 , 4 " = - - -  0 = 0 ,  asy* (21) tgy* 1~X,2 , ~ O0 

where N( = 1, 2, . . . )  is the number of the porous cavity-block 
composites. The dimensionless variables in the above equations 
are defined as follows: 

x Y U* U* O IV* I -~" % ~  "1- 0 *2 (22a) 
x*  ~ , y *  L '  Uoo 1,/¢~ 

~k* = ~ , ~* =--L~', 0 = T -- Too (22b) 
uooL uoo Tw-Too 

H [1, f2 D* D W* W H*=~,r*=~r*=T, =Z' =Z (22c) 

Based on the preceding equations, boundary conditions, 
and geometrical arrangement of porous cavities and blocks, it 
is seen that the present problem is governed by seven 
dimensionless parameters. These are the Darcy number, 
Reynolds number, two Prandtl numbers, inertia parameter, 
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geometrical parameters A and B, and the number of cavities 
N, where 

W* D* 
A = - - ,  B = - -  (23) 

H* W* 

Numerical scheme 

To obtain the solution of the foregoing system of equations, 
the region of interest is overlaid with a variable grid system as 
shown in Figure 2a. Applying the central differencing for the 
diffusion terms and the second upwind differencing for the 
convective terms, the finite-difference form of the vorticity 
transport, stream function, and energy equations were derived 
by control-volume integration of these differential equations 
over discrete cells surrounding grid points, as shown in Figure 
2b. This results in a system of equations of the following form 

Cc@c = CN@N + Cs~s + CE@E + Cw@w + S ® (24) 

N 

( i j + l )  

n 

I i 
I 

W w l(iJ) [e E 
(i-l,j) ! c t~y, , i 

i . . . .  I 
8' $ 

(id- 1 ) 

S 

b 8x 8x w e 

Figure 2 (a) Grid system for the computational domain; and (b) 
local integration cell 
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where ~ stands for the transport variables, Cs are coefficients 
combining convective and diffusive terms, and S '~ is the 
appropriate source term. The subscripts on C denote the main 
grid points surrounded by the four neighboring points 
denoted as N, S, E and W. The finite difference equations for 
~*, ~,*, and 0 obtained in this manner were solved by the 
extrapolated-Jacobi scheme. This iterative scheme is based on 
a double-cyclic routine, which translates into a sweep of only 
half of the grid points at each iteration step (Adams and 
Ortega 1982). In solving the finite-difference equations the 
following convergence criteria was satisfied: 

max q~.~-l_ _ ~0inj < 10 -6 (25) 
(~0in, j [ 

where ~0 stands for ~*, ~O*, or 0 and n denotes the iteration 
number. 

The treatment of the vorticity at sharp corners requires 
careful consideration. Several methods of handling this corner 
vorticity are discussed in Roache (1982). Here to model 
properly the mathematical limit of a sharp corner, the method 
of average vorticity values is used (Greenspan 1969). The 
bifurcation of the vorticity at the corners is essentially handled 
through the introduction of two different vorticity values. These 
are ~* and ¢*, where both are evaluated by using the 
no-slip wall equation, but ~a* is evaluated by considering the 
corner being part of the horizontal wall, whereas ~* is 
evaluated by considering it to be part of the vertical section of 
the cavity. Then a single corner vorticity equal to the average 
of two wall values is obtained. 

The interfacial properties play an important role on the 
porous-fluid system. This is due to the discontinuity of 
thermophysical properties, such as the permeability, porosity, 
and thermal conductivity, across the interface. All of these 
effects on the porous-fluid interface are summarized in the 
non-dimensional parameter Da L, AL, and Pr. To obtain a 
generalized formulation for the entire composite layer AL and 
Da L are taken in general to be variables. This is because the 
harmonic mean formulation suggested by Patankar (1980) was 
used to handle the abrupt variation of thermophysical 
properties such as the permeability and the thermal 
conductivity across the interface. This ensured the continuity 
of the convective and diffusive fluxes across the interface 
without requiring an excessively fine grid. Therefore, in the 
generalized formulation for the entire composite layer, to 
preserve all of the interface boundary conditions we must treat 
A L and Da L as variables as explained in Huang and Vafai 
(1993). This procedure was checked on several available 
simplified exact and numerical solutions such as those in Vafai 
and Thiyagaraja (1987) and Poulikakos and Kazmierczak 
(1987). For the present case DaL, AL, and Pr at the interface 
of a control volume are as follows: 

DaL._ 2DaL~DaLf .AL,_ 2AL..AL r P r l _  2Pr~ffPrf (26) 

DaLe. + DaL r ALert + ALf' Pr~ff + Prf 

where the subscripts eft, f, and I stand for effective, fluid, 
and interfacial, respectively. Therefore, instead of the source 
terms in Equations 16 and 17, the following source terms were 
used across the interface: 

S* 
Re L ~y* Re L t3x* 

a 
- Iv'Iv* ~x* (AL) (27) 

, ( S* - - -  ~* - ALIV*I~* -- AL O* alv*l _ u* 
ReL DaL c3x* 

U* 63 (~aLaL) O* ~ (D~L) 
+ Re L c~y * Re L 0x* 

0 
+ I v*lu* ~ (AL) -- I v*l~* ~ (AL) 

cy  ~ ,jx ~ 

~lv*l'] 
Oy* / 

(28) 

where Equation 27 was used for the fluid, and Equation 28 
was used for the porous region. Note that constant values of 
DaL, and AL were used for a specified porous substrate. 

A nonuniform grid system with a large concentration of 
nodes in regions of steep gradients, such as the wall, corners, 
and blocks, was employed. Figure 2a depicts the nonuniform 
grid system for the computational domain. A very careful 
analysis was made to ensure grid independence, and the upper 
boundary was systematically increased until it would have no 
detectable effect on the results. Three sets of grid systems, 
162 x 136, 162 x 195, and 202 x 292 were investigated in 
this work. It was found that for the most extreme cases there 
was only less than 1 percent difference in the values of the 
streamlines and isotherms between the 162 x 195, and 
202 x 292 grid systems. Therefore, a 162 x 195 grid system 
was adopted for the present work. 

In this study the computational domain was always chosen 
to be larger than the physical domain. Along the x-direction, 
the computational domain starts at a distance one fifth the 
total length upstream of the physical domain. This procedure 
eliminates the errors associated with the singular point at the 
leading edge of the composite system. On the other side, the 
computational domain is extended over a distance two fifths 
the total length downstream from the trailing edge of the 
physical domain. Because the present problem has a significant 
parabolic character, the downstream boundary condition on 
the computational domain does not have much influence on 
the physical domain. The application of the boundary 
condition at infinity at a finite distance from the wall was also 
given careful consideration. This was done through the 
following procedure. 

The length of the computational domain in the vertical 
direction was systematically increased until the maximum 
vorticity changes for two consecutive runs would become less 
than 1 percent. In the y-direction the computational domain 
is extended up to a distance sufficient enough to ensure that 
even for the smallest value of the Reynolds number the upper 
boundary lies well outside the boundary layer through the 
entire domain. In the present study, locating the upper 
boundary at a distance of eight times the depth of the cavity 
has been found to be sufficient. Extensions beyond eight times 
the depth of the cavity had no effect on the solution. We ran 
extensive tests on the effect of varying the size of the 
computational domain and observing its effects on the physical 
domain to ensure that the boundary conditions on the 
downstream side of the computational domain (the right-hand 
side) had no influence on our results. In our work for simplicity 
the conditions at the last interior grid points from the outflow 
boundary condition in the previous iteration were used and 
yielded the same solution for the domain of interest except for 
the region very close (this is the region that was part of our 
computational domain but not the physical domain) to the 
downstream boundary as when the other conditions were used. 

To validate the numerical scheme used in the present study 
further, initial calculations were performed for laminar flow 
over a flat plate (i.e., H* = 0, for no porous substrate) and that 
over a flat plate embedded in a porous medium (i.e., H* --} oo 
and W* ~ oo) representing the full porous medium case. The 
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results for H* = 0 agree to better than 1 percent with boundary 
layer similarity solutions for velocity and temperature fields. 
The results for H* ~ oo and W* --* oo agree extremely well with 
data reported by Vafai and Thiyagaraja (1987). These 
comparisons were found to be similar to those presented in 
Vafai and Kim (1990). 

R e s u l t s  a n d  d i s c u s s i o n  

The dimensionless parameters that need to be specified for this 
system are ReL, DaL, AL, Pr, A, B, and N. Because these seven 
basic dimensionless parameters are required to characterize the 
system, a comprehensive analysis of various combinations of 
these parameters was done. The results given in this work 
present only a small fraction of the cases that were investigated. 
The displayed results were chosen to represent the most 
pertinent effects of these parameters. In addition, to illustrate 
the flow and temperature fields better, only the portion that 
concentrates on the porous-fluid region and its close vicinity 
are presented. However, the much larger domain was always 
used for numerical calculations and interpretation of the 
results. 

The range of Reynolds numbers used in the present 
investigation were chosen such that the laminar conditions 
prevail. Furthermore, a careful study was done to observe when 
the turbulent effects become important. The turbulent features 
appear for Reynolds numbers significantly larger than 
Re = 3 x 105, which is the highest Reynolds number used in 
the present work. In fact this is one of the advantages of these 
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types of porous obstacles. Had, for example, solid blocks been 
used instead of porous blocks we would get separation and 
appearance of turbulence features at much smaller Reynolds 
numbers (Huang and Vafai 1993). 

The influence of the cavity-block structure on the flow field 
is depicted in Figure 3a for a case where the Reynolds number 
is 3 x l0 s, the Darcy number is 8 x 10 -6, the inertial number 
is 0.35, the dimensionless height and width of the porous cavity 
or the block are 0.02 and 0.06, respectively, and the 
dimensionless spacing between the porous cavities and the 
blocks is 0.06. It can be seen that the streamlines are 
considerably distorted because of the presence of the porous 
cavity-block structure. The streamlines move upward while 
piercing into the porous block and become sparser after passing 
through it. Physically, this is due to the relatively larger 
resistance that the flow encounters in the porous block, which 
in turn displaces the fluid by blowing it from the porous region 
into the fluid region and reduces mass flow rate through the 
porous blocks. This effect is more pronounced for the cases 
with smaller Darcy number or larger inertial number. 

Figure 3a also displays a laminar vortex contained within 
each cavity. The intensity of the eddies within each cavity 
decreases along the flow direction. These vortices are formed 
as a result of the entrapped flow striking on the downstream 
cavity wall and then flowing toward the bottom surface. 
Because of an increase in the thickness of the external boundary 
layer along the plate, the mass flow rate penetrating into the 
subsequent cavity decreases, which, in turn, reduces the 
intensity of vortex in the cavities along the flow direction. The 
small fluctuations of streamlines close to the inlet of porous 
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Figures 4a-d reveal that as the Darcy number decreases, the 
interaction between the vortex inside the cavity and the 
external flow becomes more pronounced. This is due to the 
larger bulk frictional resistance to the flow within the porous 
block for the smaller Darcy number, which, in turn, results in 
a larger adverse pressure gradient for the porous obstacle. 
Consequently, the flow rate near the wall is decreased because 
of the viscous shear stress and the adverse pressure gradient. 
This results in the formation of a separation zone before the 
porous block. 

For the case of lower Darcy numbers, the larger bulk 
frictional resistance reduces the mass flow rate perforating into 
the cavity, causing the uplifting of the streamlines from the base 
of the cavity. Consequently, an intricate eddy region is formed 
at the inlet of the porous-fluid interface. For Darcy numbers 
below 2 x 10-7, the vortex region in front of the porous blocks 
gradually becomes part of the recirculating flow inside of the 
cavities. For low Darcy numbers, the strength of the laminar 
eddies in the separation zone before the porous blocks, are 

damped out by the porous matrix frictional resistance, which 
allows the boundary layer to reattach itself to the wall and 
form a closed vortex region. Furthermore, for low Darcy 
numbers, the boundary layer, separation zone, or vortex region 
covering the inlet of cavities creates a complicated recirculating 
flow inside the cavities, as seen in Figure 4. 

The temperature distribution corresponding to the flow field 
shown in Figure 4 is displayed in Figure 5. The temperature 
fields shown in Figure 5 correspond to a case in which the 
Prandtl number is 0.7, and the conductivity of porous media 
is equal to that of the fluid. For smaller Dare), numbers, the 
larger separation zone after the porous cavities increases the 
distortion of the isotherms near the heated wall. It can be seen 
that as the Darcy number decreases the thickness of the 
external boundary layer increases. Initially, as the Darcy 
number decreases (up to DaL = 2 x 10-~), the thermal 
penetration into the cavities increases, especially within the left 
half section of the cavity. This is the result of the relative 
increase in the thermal diffusion compared to convection within 
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the porous medium. The thermal penetration ceases to 
propagate further into the cavity for Darcy numbers less than 
2 x 10 -7 because of the aforementioned formation of the 
intricate eddy region at the inlet of the porous-fluid interface. 
It should be noted that as the Darcy number is reduced below 
1 x 10-% an almost stagnant region is formed at the inlet of 
the cavities. The previously described effects lead to the skin 
friction and Nusselt number distributions shown in Figure 6. 

Effects of  the Reynolds number 

The effect of an increase or decrease in the Reynolds number 
is shown in Figures 7 and 8 for DaL = 8 x 10 -6, m L = 0.35, 
P r=0 .7 ,  A = 3 ,  and B = I  for Re L = 3  x 105, 3 x 104 , 
1 x 104, and 5 x 103, respectively. Comparison of the 
streamlines in Figure 7 shows that as the Reynolds number 
decreases, the distortion of streamlines and boundary layer 
thickness along the wall becomes more significant. In addition, 
the center of the vortex for each cavity moves further to the 
center. This is caused by a reduction in the magnitude of the 
inertial forces at a lower Reynolds number, thus reducing the 
penetration extent of the flow into the porous blocks and 
cavities. This results in a larger blowing effect over the porous 
block resulting in a larger thickness of boundary layer near the 
wall. For larger Reynolds numbers, the external flow basically 
skims past the cavity without a strong interaction with the flow 
inside of the cavities. However, there is a significant effect on 
the porous-fluid interface structure at larger Reynolds number. 
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Figure 6 Effects of the Darcy number on (a) friction coefficient 
and (b) Nusselt number for f low through alternate porous 
cavity-block obstacles for ReL = 3 x 10 s, A L = 0 . 3 5 ,  Pr = 0.7, 
ke,/k f = l.0, A = 3, B = I ,  H * = 0 . 0 2  

The previously cited distortion of the flow field leads to the 
skin friction and Nusselt number distributions shown in Figure 
8. The distortions and variations of the skin friction and Nusselt 
number distributions are direct result of the described flow 
field. 

Inertial effects 

The inertial effects become significant for the higher 
permeability and the lower fluid viscosity (Vafai and Tien 1981). 
Figures 9 and 10 show the effect of the inertial parameter on 
the flow field and the skin friction and Nusselt number 
distributions for ReL = 3 x 105, DaL = 8 x 10 -6, Pr = 0.7, 
A = 3, and B = 1, for A L = 0.35, 35, 70, and 210, respectively. 
As expected, the distortion of the streamlines and isotherms 
and the size of the vortices near the wall increase with an 
increase in the inertial parameter. This is the result of the larger 
bulk frictional resistance that the flow encounters at larger 
values of the inertial parameter. This, in turn, leads to a larger 
blowing effect, which reduces the mass flow rate through the 
porous media, and results in a larger adverse pressure gradient 
in front of the porous obstacles, creating a larger separation 
zone. 

Prandtl number effects 

To investigate the effect of the Prandtl number on the flow and 
the Nusselt number distribution, three different Prandtl 
numbers were chosen such that they will cover a wide range 
of thermophysical properties. The numerical results are 
presented in Figures 11 and 12 for ReL = 3 × 105, Da L = 8 x 
10 -6, A L = 0.35, A = 3, and B = 1 for three different fluids with 
Pr = 0.7 (air), Pr = 7 (water), and Pr = 100 (a representative 
oil), respectively. Obviously, the variations of Prandtl number 
have no effect on the flow field, and therefore the flow field is 
the same for all Prandtl numbers. This flow field is shown in 
Figure l la.  As seen in Figures l ib -d ,  because of the lower 
value of the thermal diffusivity relative to the momentum 
diffusivity the extent of the thermal penetration over the 
external boundary as well as into the cavity becomes 
significantly confined for larger values of Prandtl numbers. 
These effects are reflected in the Nusselt number distributions 
shown in Figure 12. 

Effect of  the first geometric parameter A 

The first geometric parameter A = W*/H* represents the 
influence of the geometry of the porous obstacles on the flow. 
For this purpose, two configurations have been investigated. 
Figures 13 and 14 show the streamlines and isotherms for 
Re L = 3 x 105, DaL = 8 x 10 -6, A L = 0.35, Pr = 0.7, and 
B = 1 for these two cases corresponding to A = 3 and 4, 
respectively. It should be noted that Figures 13 and 14 also 
represent the effects of the variations of the second geometric 
parameter B, which is to be discussed later. Comparison of 
Figures 13 and 14 shows that as the value of A increases, the 
distortion in streamlines and isotherms become more 
pronounced. Moreover, for larger values of A, the boundary 
layer separation zone in front of the porous block increases, 
which, in turn, affects the flow and temperature fields inside of 
the cavities. This is a direct result of the relative increase in the 
length of the porous block, which extends the blowing action, 
and subsequent deceleration of the flow field. 

Effect o f  the second geometric parameter B 

The effect of interspacing between a porous cavity and a porous 
block (B = D*/W*) were studied for two cases. These cases 
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corresponded to Re L = 3 x 10 s, Oa L = 2 x 10 - : ,  A L = 0.35, 
Pr = 0.7, and A = 3 for B = 1 and 2. The streamlines and 
isotherms for these cases are also presented in Figures 13 and 
14, respectively. As can be seen, when the value of B increases 
from 1 to 2, the distortions of streamlines and isotherms as well 
as the effect of boundary layer separation zone on the 
recirculating flow inside the cavity become less pronounced. 
This is due to the larger intcrspacing between porous cavities 
and blocks, which delays the blowing and deceleration actions. 

Effects o f  larger set o f  porous cavity 
block configurations 

The effects of larger set of porous cavity block configurations 
arc shown in Figure 15. This figure displays the results for the 
external flow over three porous cavity-block structures with 
A = 3 a n d  B = 1 for  R c  L = 3 x 105, D a  L = 2 x 10 - 7 ,  A L = 
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number of cavity-block obstacles does not alter the main 
features of the flow and temperature fields. 

Conclus ion 

Passive control and alteration of heat transfer using alternate 
porous cavity-block wafers has been presented in this work. 
The effects of all of the governing parameters such as the Darcy 
number, Reynolds number, inertia parameter, Prandtl number, 
the two geometric parameters, and the number of cavity-block 
structures on the flow and temperature fields were explored in 
detail. The present work constitutes an innovative way of 
altering and control of the flow and heat transfer characteristics 
of an external surface. Throughout the study a reasonably wide 
range of the independent parameters were covered. An in-depth 
discussion of the results for various physical interactions 
between the recirculating flows inside of the cavity and the 
external flow was presented. Several interesting phenomena 
such as the interactions between the blowing and displacement 
effects from the porous blocks and the vortices penetrating into 
the porous cavities were presented and discussed. These results 
indicate that altering some parametric values can have 
significant effects on the external momentum and thermal 
boundary-layer characteristics. The present investigation forms 
a pertinent and basic research investigation for altering the skin 
friction and heat-transfer characteristics of an external surface. 
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